Fractional statistics and finite bosonic system: A one-dimensional case
نویسنده
چکیده
The equivalence is established between the one-dimensional (1D) Bose-system with a finite number of particles and the system obeying the fractional (intermediate) Gentile statistics, in which the maximum occupation of single-particle energy levels is limited. The system of 1D harmonic oscillators is considered providing the model of harmonically trapped Bose-gas. The results are generalized for the system with power energy spectrum.
منابع مشابه
On the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations
In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.
متن کاملStatistics of the work done by splitting a one-dimensional quasicondensate.
Motivated by experiments on splitting one-dimensional quasicondensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its behavior at the lowest energy threshold, which develops an edge singularity. A formal connection between this probability distribution and the critica...
متن کاملIntermediate-statistics Spin Waves ——————————————————
In this paper, we show that spin waves, the elementary excitation of the Heisenberg magnetic system, obey a kind of intermediate statistics with a finite maximum occupation number n. We construct an operator realization for the intermediate statistics obeyed by magnons, the quantized spin waves, and then construct a corresponding intermediate-statistics realization for the angular momentum alge...
متن کاملآرام کردن مایع فرمی: جدال با علامتهای فرمیونی غیر مستقیم
The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics a...
متن کاملA numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008